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Abatraet-The steady combined thermal convection of a viscous Boussinesq fluid contained between two 
concentric sphere-s is considered. The spheres are maintained at different temperatures and rotate about a 
common axis with different angular velocities. A uniform radial gravitational field acts on the fluid. 
Approximate solutions to the governing equations are obtained with a modified Galerkin technique for 
moderate Reynolds numbers. The resulting flow patterns, temperature distributions, and heat-transfer 
and torque characteristics are presented for several angular velocity ratios and degrees of stratification. It 
is shown that increasing the buoyancy forces alters the primary and secondary flow patterns as well as 

the temperature distributions. The total rate of heat transfer and torque are subsequently enhanced. 

NOMENCLATURE 

c, specific heat ; 
e 

~~9 

radial unit vector ; 
gravitational acceleration constant ; 

Gr, Grashof number = g&T,- Tl)Ri/vz; 

Pr, Prandtl number = &c; 
q(O), local wall heat-transfer rate; 

Q, total heat-transfer rate ; 
r, radial coordinate; 
R,,R,, inner and outer radius of the spheres; 

Ra, Rayleigh number = GrPr; 

Re, Reynolds number = o,,R~/v; 

T(r, O), fluid temperature; 
TI , T2, inner and outer surface temperatures ; 
v, velocity component. 

Greek symbols 

B. coefficient of volume expansion of the 
fluid ; 

{(r, O), dimensionless temperature function ; 

4 radius ratio = RJR, ; 

0, latitudinal coordinate; 

K, thermal conductivity; 

K viscosity of the fluid ; 
_ 
!4 angular velocity ratio = w2/wI ; 

V, kinematic viscosity. 
n, 3.1415---; 

4, longitudinal coordinate; 
tj (r, t?), stream function ; 
w(r, O), angular velocity of the fluid ; 
w,,o,,angular velocity of the inner and outer 

spheres ; 

“0. reference angular velocity ; 
Q(r, e), angular momentum function. 

Subscripts 

c, conduction; 
r,e,b, vector components. 

Superscripts 

(*), physical variable. 

1. INTRODUCIION 

WE CONSIDER in this second part the steady thermal 
convection of a viscous Boussinesq fluid contained 
between two concentric spheres. The spheres are 
maintained at constant, prescribed temperatures and 
angular velocities. Each sphere rotates about a 
common axis. The gravitational force is assumed to be 
uniform in the radial direction. We consider flows 
exhibiting both natural and forced convection pheno- 
mena. As stated in Part 1, the general problem 
approximates several geophysical flows and is also a 
comparatively simple example of the effects of rotation 
on thermal convection. The interaction of buoyancy 
forces with the secondary flow arising from the 
differential rotation produces many interesting con- 
vective phenomena. 

Several investigators have studied the flow and 
heat-transfer characteristics for configurations simi- 
lar to that described above. Erdogan [l, 21 in- 
vestigated the temperature distribution for fluid 
contained between two concentric spheres. The outer 
sphere rotated at a given rate while the inner was 
stationary. Secondary flows were ignored as the 
velocity field was found from Stokes’ equation. 
Results for the temperature distribution were pre- 
sented for various thermal boundary conditions. A 
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similar study by Avudainayagam [3] found that the 
overall rate of heat transfer from a rotating inner 
sphere to a stationary outer sphere was unaffected by 
convection. This is not unexpected since the Stokes’ 
flow approximation was used for the velocity 
distribution. 

Singh [4] and Bentwich [5] have studied the heat- 

transfer characteristics for a rotating sphere immer- 
sed in an infinite fluid medium. Singh considered the 

inner sphere to be at a constant temperature and the 

temperature of the fluid far from the rotating sphere 
was assumed uniform. Viscous dissipation was 
included. Isotherms were found to be surfaces of 

revolution which were closer to the spherical surface 
at the North Pole than at the Equator. Bentwich 

used a perturbation solution method for small PC&t 

and Reynolds numbers to find the temperature 
distribution for both the solid, rotating sphere and 

the surrounding fluid. A constant strength heat 

source was assumed at the center of the sphere. 
Solutions were presented as functions of the ratio of 

the conductivities of the sphere and fluid. Isotherms 

were of the same general shape as those reported by 
Singh. 

forced convection. The dependent and independent 

variables used here to describe the flow field are 
identical to those in Part I. However, the flow 
geometry (Fig. 1, Part I) is now in a uniform radial 

gravitational acceleration field placed at the center of 

the spheres. Thus. g = -gee, where go is constant. 

The introduction of a gravitational field combined 

with a Boussinesq fluid [13] requires the addition of 

a body force term to the governing momentum 

equation [equation (21, Part 11. This term has the 
effect of completely coupling the momentum and 
energy equations, as follows [ 141: 

(1) 

Experimental results for the heat transfer of a 
rotating sphere to or from an infinite fluid medium 

have been reported by Nordlie and Kreith [6] and 

Kreith, et al. [7]. Data were presented for wide 
ranges of Reynolds, Grashof, and Prandtl numbers. 

Pedlosky [S] presented a linearized solution for 
stratified fluid contained between two concentric, 

differentially rotating spheres of narrow gap. It was 
found that the radial stratification had a significant 

effect on the flow field. The flow field in a rotating, 

heated spherical annulus for arbitrary radius ratios 

was studied analytically by Riley [9] and Riley and 
Mack [lo]. The gravitational field was assumed to 
be uniform and parallel to the rotation axis. A 

perturbation solution method was used and results 
were presented for small Reynolds numbers (of order 
1). It was shown that secondary flows as well as 

contours of constant temperature were strongly 
dependent on the ratio Gr/Re’. Experimental data 

for a geometry similar to that of Riley and Mack 
were presented by Askin [ll] and Maples, et nl. 

P21. 

and 

Pr X,$1 byV2[=--- 
r2 sin H ?(r, 0) 

where the Jacobian notation has been used. 

The boundary conditions are the same as in Part 

1: the fluid velocity and temperature at a surface 

equals the respective surface velocity and 
temperature. 

The present work extends that of previous in- 
vestigators by allowing solutions to be found to the 

coupled Navier-Stokes and energy equations for 
flow parameters much larger than permitted by 
perturbation methods and by considering combined 
modes of heat transfer. Here, the fluid is assumed to 
be unstably stratified with the gravitational field 
acting in the radial direction. The solutions are seen 
to be a complicated function of buoyancy and 
rotational effects as well as the geometry. 

As in the forced convection case, the governing 

equations for these combined convection flows are 
written in dimensionless form using the same 
characteristic time, length, and temperature re- 
ferences. Again, dimensionless parameters evolve 

including q, j, Re, and Pr as before. The remaining 
dimensionless parameter is the Grashof number Gr 

= g,fi(T, - Tl)R$v2 which appears in equation (2). 
If the inner sphere is warmer than the outer sphere, 

T, > T2 and Gr is negative. This situation may be 
thermally unstable, and in the absence of rotation 1s 
analogous to the Bbnard problem. When the spheres 
are rotating at different rates, heating either sphere 

modifies the basic shear driven secondary flow. The 

extent of this modification is a complicated function of 
all the parameters of the problem. 

2. ANALYSIS 

It proves convenient in convection calculations to 
consider fixed values of the ratio Gr/Re’. The forced 
convection problem is given by Gr/Re’ = 0, thereby 
uncoupling equations (2) and (3). Here we consider 
the values GriRe” < 0. corresponding to the com- 
bined convection problem. Solutions are obtained to 
this fully coupled problem using the same techniques 
described in Part 1. 

The system of equations describing the flow field Since this is a parametric study, values of Gr/Re’ 

for this combined convection situation is quite were chosen to illustrate trends. In some cases, the 

similar to that given in Part 1 (equations l-3) for Grashof numbers become quite large and may 
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perhaps lead to supercritical values of the Rayleigh 

number (Ra = GrPr). However, the authors are not 
acquainted with any existing research into the 

thermal stability of a fluid in a differentially rotating 

spherical annulus. The stability of the results pre- 
sented here is, then, still open for further discussion. 

3. DISCUSSION OF THE RESULTS 

Calculations were made for ji = 0, rx.. and -l/3. 
representing three widely different flow configu- 
rations. The value fi = 0 corresponds to a rotating 
inner sphere with the outer sphere at rest, while the 

case ji = cc is a rotating outer sphere with a fixed 

inner sphere. When fi = - 1,‘3 both spheres are 
rotating with wt = -3w,. In order to limit the 
number of calculations, we take Pr = 1 and q = 0.5. 

A more extensive range of parameters is discussed in 

Douglass [14], and results for stable stratification 
are given by Shaughnessy and Douglass [15]. For 
each of the above configurations, various values of 
Gr/Re’ (corresponding to the relative significance of 

buoyancy forces) were considered. 
Figures l-5 show the flow which occurs for Re 

= 100 and fi = -l/3. In Fig. 1, secondary flow 

streamlines in the upper portion of a meridian plane 

show the effects of increasing thermal stratification. 
The shear driven secondary flow of Fig. l(a) (Gr/Re’ 

= 0) consists of two counter rotating toroidal eddies. 
The eddy near the inner sphere has a strong 
counterclockwise circulation; the other eddy has a 

slightly weaker clockwise circulation. The differences 

in the strength and direction of the flow in these 
convective motions reflect the fact that the inner 
sphere is rotating three times as fast as the outer 

sphere, and in the opposite direction. 

For Gr/Re2 = - 1, the buoyancy and centrifugal 
forces are of the same order of magnitude. Figure 
l(b) shows that the clockwise eddy located near the 

outer sphere now occupies a wider portion of the 
annulus near the North Pole (i.e. B _v 0). The 
counterclockwise eddy has grown slightly in 
strength, but is otherwise unchanged. As Gr/Re’ 

increases through negative values, the secondary 

flow continues to be distorted. The eddies migrate, 
reducing the amount of contact between them. A 
current formed at the interface of the two eddies 
which initially flowed northward and was parallel to 

the rotating surfaces for Gr/Re’ = 0, gradually 
steepens until it becomes nearly perpendicular to the 
rotation axis and tangent to the inner surface. For 

Gr/Re’ = - 3, the counterclockwise eddy occupies 
all of the annulus in the equatorial region, while the 

clockwise eddy dominates the northern latitudes. 
The circulation of both eddies has increased in the 
process. 

These phenomena can be explained in terms of the 
centrifugal and buoyancy forces acting on fluid 
elements. Consider the case for which buoyancy 
forces are vanishingly small, i.e. forced convection. 
The basic secondary flow is driven by the un- 
balanced centrifugal force field established by the 

FIG. 1. Secondary flows (10%)) for Re = 100 = qR$/v. Pr 
= 1, q = 0.5, and b = -l/3: (a) Gr/Re’ = 0; (b) Gr/Re2 = 

- 1; (c) Gr/Re’ = -2 : (d) Gr/Re’ = - 3. 
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FIG. 2. 102([-[,) for Re = 100 = w,R$/v, Pr = 1, q = 0.5, 
and j = -l/3: (a) Gr/Re* = 0; (b) Gr/Re* = - 1; (c) 

Gr/Re2 = -3. 

differential rotation of the two spheres. As fluid 
moves along the inner sphere from north to south it 
is warmed by conduction heat transfer from the 
inner sphere. At the equator the warm fluid leaves 
the inner sphere and is carried northward on the 
current between the two eddies. As it returns to the 
starting point, the fluid is cooled by conduction heat 
transfer to the cooler fluid above it. A similar process 
occurs in the clockwise eddy. 

With buoyancy forces present, the secondary flow 
is distorted by the tendency for warm fluid to rise 
and cool fluid to sink. This mechanism both 
strengthens and distorts the basic secondary flow. 
Figure l(b) shows that the buoyancy forces on the 

FIG. 3. Local heat flux for Re = 100 = o,R:/v, Pr = 1, q 
= 0.5, and p = -l/3: (a) Gr/Re’ = 0; (b) Gr/Re* = - 1; 

(c) Gr/Re’ = -3. (----) r = q. (--) r = 1. 
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heat flux. Re = 100 =_p2R:/v, Pr = 1, q 7 0.5, and @ 
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cool fluid in the outer,eddy overcome the centrifugal 
forces in the northern latitudes, causing a slight 
settling of the eddy ‘boundary. Near the equator, 
however, the strong centrifugal forces. prevent any 
upward motion of warm fluid. As the buoyancy 
forces grow stronger (Fig: lc,d),. they eventually 
dominate the centrifugal forces. The c&er fluid 
sinks, and the warm fluid rises. Since the buoyancy 
forces and the direction of motion generally coincide, 
the circulation in each eddy isenhanced 
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Lo/-. 

I 
near the North Pole (Fig. 2a). The concentration of 
warm fluid at the equator spans the annulus, while at 
the pole, the warm fluid is confined to the outer half 
of the gap. A large region of relatively cool fluid 
occupies the mid-latitudes. As the magnitude of 
Gr/Re’ increases, the northern concentration of 
warm fluid increases in width until it spans the 
annulus. ,Figure 2(c) shows the l-c, contours 
occurring for Gr/Re’ = -3. A comparison of Figs. 1 
and 2 indicates that the distorted secondary flows 
are responsible for these temperature distribution 
effects. 

(al 
Additional insight into the effects of convective 

activity on the heat transfer in the annulus can be 
gained from the surface heat flux profile a(0). Figure 
3 shows the latitudinal profile of i//8,, where 4, is the 
conduction heat flux. The ratio is given by either 
equations (10) or (14) of Part 1. Figures 3(a) and (b) 
show that for forced convection, and flows with 
relatively small buoyancy forces, there is little 
enhancement of the local heat flux The secondary 
flows are relatively ineffectual in convecting cool 
fluid to the hot surface, and vice-versa, because both 
surfaces are separated by the secondary swirl. Once 
the eddies begin to span the gap, however, the heat 
transfer is greatly enhanced as shown in Fig. 3(c) 
(cf. Fig. 1). The central fluid current is especially 
effective in bringing cool fluid in contact with the hot 
inner sphere. On the outer sphere, the updrafts at the 
equator and North Pole bring warm fluid into 
contact with the cool surface resulting in large local 
heat fluxes. 

The total heat flux, Q, normalized by the con- 
duction flux, Q,, is found by integrating the local flux 
ratio, weighted by sin0 (because of surface area 
effects), over the surface of spheres. The total 
conduction heat flux is found to be 

FIG. 5. Angular velocity contours for Re = 100 = w,Ri/v, 
Pr = 1, 0 = 0.5, and fi = -l/3: (a) GrjRe’ = 0; (b) GrfReZ 

= -l;(c)Gr/Re’= -3. 

Figure 2 illustrates the effect of increasing buoy- 
ancy forces on the temperature distribution in the 
annulus. In order to show the effects of convection, 
lines of constant C-C, have been plotted. C,(r) is the 
conduction temperature distribution given by 

the same value for each spherical surface. Q/Q, is 
given by either equation (11) or (15) of Part 1. The 
total heat flux is shown in Fig. 4. The rapid increase 
in Q/Q, for increasing buoyancy forces reflects the 
marked changes in the secondary flows as the 
buoyancy forces become strong. Increasing the 
Reynolds number also enhances the total heat 
transfer. This trend is shown in Table 1 for Gr/Re’ 
= - 1. The effect, however, is not as dramatic for the 
Reynolds numbers listed as it is for increasing the 
buoyancy forces. 

C,(r) = (14/U -VI. (4) 
Table 1. The total heat flux for Gr/Re’ = 

- 1, Pr = 1, q = 0.5, and ji = -l/3 

The deviation c-5, is therefore a sensitive measure 
of the effects of convection. When the Grashof 
number is negative, as it is here, regions containing 
fluid which is warmer than the conduction tempera- 
ture hava negative C, - I& values. 

In the case of forced convection, regions of 
relatively watm fluid are found near the equator and 

Re = o,Ri/v ete, - 1 

10 3.7 x lo+ 
100 2.9 x 1o-2 
125 6.7 x lo-’ 
150 1.3 x 10-l 
175 2.0 x 10-l 
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Contours of constant values of the (dependent) 
angular velocity variable, w, are shown in Fig. 5. In 
each illustration, the curves are surfaces of re- 
volution. For forced convection, they are nearly 
spherical in nature, but as the buoyancy forces 
increase, the contours become quite distorted. This 
distortion is associated with the secondary flow 
which transports the “slower” fluid to the middle 
latitudes [cf. Fig. l(d)]. 

The second series of results is for Re = 200 and ji 
= 0, i.e. the outer sphere is at rest. Results shown are 
limited to values of Gr/Re’ between 0 and 0.5. Figure 
6 shows how the secondary flow changes in response 
to increasing buoyancy forces. The forced convection 
flow consists of a single toroidal eddy driven by 
shear forces at the inner boundary. Upon heating the 
inner sphere, buoyancy forces begin to influence the 
secondary flow near the North Pole, where the 
centrifugal forces are weakest. A weak clockwise 
circulation is established which gains strength as the 
buoyancy forces become stronger. At GrlRe’ = 

-0.5, this northern eddy completely spans the gap 
but its circulation remains weak in comparison to 
the counterclockwise equatorial eddy. 

The plots of [ -[, for this series of flows with 
small buoyancy forces have a different character 
from that seen for fi = - l/3, but as buoyancy forces 
become more important their character is quite 
similar. Figure 7 shows that for Gr/Re’ = 0, a region 

FIG. 6. Secondary flows (lo*+) for Re = 200 = w,R:/v, Pr 
E 1, q = 0.5, and /i I 0: (a) Gr/Re’ = 0; (b) Gr/Re’ = FIG. 7. 102([-<c) for Re = 200 = olR:/v, Pr = 1, q = 0.5, 

-0.25; (c) Gr/Re* = -0.4; (d) Gr/Re’ = -0.5. and ji = 0: (a) Gr/Re’ = 0; (b) Gr/Re* = -0.5. 
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FIG. 8. Local heat flux for Re = 200 = w,Rj/v, Pr = 1, q 
= 0.5, and @ = 0: (a) Gr/Re’ = 0; (b) Gr/Re’ = -0.5. (----) 

r=q,(-)r=l. 

a 
,--I 

Qc 

FIG. 9. The effect of increasing the Reynolds number on the 
total heat flux for Pr = 1, q = 0.5, and for /.i = 0 (A) and p 
= co (0). (-) Gr/Re’ = 0, (----) Gr/Re’ = -0.5, and 

(---) Gr/Re’ = -1. 

of relatively hot fluid occurs near the equator, with 
cool fluid in the northern latitudes. These con- 
centrations are the result of updrafts and downdrafts 
in the secondary flow field. The single toroidal eddy 
of Fig 6 for Gr/Re’ = 0 ultimately is replaced by two 
counter-rotating eddies at Gr/Re2 = -0.5. These 
eddies contribute two updrafts and one downdraft, 
consequently, the C -{, plot of Fig. 7(b) shows two 
hot regions and one cool region. 

Figure 8 shows that the local heat flux results for 
fi = 0 are also qualitatively similar to those for ji = 
-l/3 when two eddies occur in each flow and span 
the gap. Otherwise, the heat flux results reflect the 
differences in convection associated with a single 
eddy (Fig. 6a) and two, layered eddies (Fig. la). The 
variation of the total heat flux with Reynolds 
number for fi = 0 is shown in Fig. 9 for forced 

FIG. 10. Secondary flows (lO*$) for Re = 200 = co2R:/v, 
Pr = 1, q = 0.5, and ii = co : (a) Gr/Re* = 0; (b) Gr/Re2 = 

-0.5. 

(a 1 

lb) 

FIG. 11. 102([-c,) for Re = 200 =w2Ri/v, Pr = 1, q 
= 0.5, and fi = co: (a) Gr/Re2 = 0; (b) Gr/Re2 = -0.5. 
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FIG. 12. Local heat flux for Re = 200 = w,R:/v, Pr = 1, q 
= 0.5, p = to, Gr/Re* = 0 (--) and Gr/Re* = -0.5 (----). 

RG. 13. Angular velocity contours for Re = 200 = wIRi/v, 
Pr = I, 9 = 0.5, and ji = co: (a) Gr/ReZ = 0; (b) Gr/Re2 = 

-0.5. 

convection as well as combined convection. It is 
shown that, as for b = -l/3, increasing the buoy- 
ancy forces has a much larger effect than does 
increasing the Reynolds number. 

The final series of results, shown in Figs. 10-13, 
share many features with the flows just described. In 
this series of flows, the inner sphere is fixed while the 
outer sphere rotates (ii = co). For Gr/Re’ = 0, the 
secondary tlow consists of a single eddy with 
clockwise circulation. Buoyancy forces first distort 
the secondary flow near the equator and eventually a 
small counterclockwise motion is established there 
(Fig. 10). At Gr/Re’ = -0.5, a well defined weak 

eddy appears near the outer sphere in the equatorial 
region. This eddy does not span the gap, which. as 
seen earlier, has important consequences for the 
temperature distributions. The { - <, contours of Fig. 
11 show that the counterclockwise eddy has far less 
effect on the temperature field than in earlier double 
eddy flows. This is a result of both its weakness and 
the fact that the eddy remains confined to a region 
near the outer sphere only. The local heat flux results 
(Fig. 12) in particular are quite different than in cases 
where the convective eddies span the annulus. 

Since there is only one large eddy which spans the 
annulus, the results for increased buoyancy forces are 
quite similar to those for forced convection. The 
differences in the results are caused more by the 
enhancement of the circulation of the clockwise eddy 
than by buoyant distortion. This increase in second- 
ary flow is caused by the buoyant effect of the hot 
fluid near the polar region. This buoyant force 
increases the magnitude of the secondary flow swirf 
because it tends to drive the fluid in the direction it is 
already going. The total heat flux results for this 
series of flows are shown in Fig. 9. As expected, the 
heat flux increases as both Rcj and GrJRe’ increase. 
though more strongly with the latter. The angular 
veiocity contours are shown in Fig. 13 and reflect a 
relatively small change in shape for increased 
buoyancy forces. This is expected since the secondary 
flow is relatively unchanged. 

4. STRA~FI~ATIO~ AND TORQUE 

The torque required to rotate a sphere, I@. was 
found by integrating the shear stress over the surface 
of the sphere to obtain 

It is useful to non-dimensionaIize the torque by its 
value for creeping flow, $e. This low Reynolds 
number torque is given by M, = 8xpR:(w, - coJ(l 

-$). In this case, the secondary flows become 
unimportant, and the flow field is described entirely 
by the primary flow [w(r, e) and p,(r, H)]. 

Typical results are shown in Fig. 14. To limit the 
number of results presented, only data for PJ = 0.5 
and Pr = 1.0 are shown. Other cases may be found 
in [14]. Figure 14 summarizes the torque de- 
pendence on both Re and GrJRe’ for different 
angular velocity ratios including a stationary outer 
sphere (6 = 0), a stationary inner sphere ($ = XI). 
and a contrarotating sphere (17 = - l/3). In each case 
the forced convection (or isothermal flow) results are 
presented for comparison. These include theoretical 
results from Munson [16] and the experimental 
results from Waked [ 171. 

In all cases, the torque is seen to be an increasing 
function of both Re and GrjRe2. This is not 
unexpected since an increase in either of these 
parameters increases the magnitude of the secondary 
flow circulation. Not only does the magnitude of the 
secondary Row vary with these parameters. but the 
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FIG. 14. The effect of stratification on the torque required 
to rotate the spheres. Pr = 1,~ = 0.5, and (a) ji = -l/3, (b) 
k = 0, and (c) j = co. Gr/Re’ = 0 (O), Gr/Re’ = -0.5 
(A), and Gr/Re’ = -1 (0). Experimental results for 

Gr/Re* = 0 and q = 0.44 [I7] ( x ). 

shape of the secondary flow swirls also changes. This 
is illustrated in Figs. 1, 6, and 10. Since the primary 
and secondary flows are coupled [cf. equations (1) 
and (2)], the enhanced secondary flow (given in 
terms of $) alters the primary flow (given in terms of 
Si), resulting in increasing values of ~/~~. The 
primary flow can also be altered through the 
coupling of the energy and momentum equations 
through the body force term in the momentum 
equation [cf. equations (2) and (3)]. As shown, for 
example in Fig. 5, this effect may be quite dramatic. 
The net result is also an increased value of ~/~* as 
the buoyancy forces (Gr/IV) are increased. In all 
cases investigated, the limiting isothermal, creeping 
flow case (CT/&’ -+ 0) gave the smallest torque. 
That is, G/&i, > 1 except for the special case of iii 
= A, when Re = 0. 

5. CONCLUSION 

The interaction of buoyancy forces with the shear- 
driven secondary flow in the annulus leads to many 
interesting fluid motions. For the moderate Reynolds 
numbers studied here, a common configuration for 
the secondary flow is a pair of counter-rotating 
eddies. The location of these eddies, their size, 
strength, and direction of flow are functions of the 
angular velocity ratio ii, and Gr/Re2. The latter 

parameter is a measure of the relative strengths of 
buoyancy forces as compared with centrifugal forces. 

As expected, the temperature ~st~butions,, local 
heat flux, and torque are strongly dependent on the 
secondary flow configuration. Strong jet-like fluid 
motions along the line of contact between eddies 
produce large distortions of the otherwise nearly 
spherical isotherms and angular velocity contours. 
The local heat flux on the surface is highly correlated 
with updrafts and downdrafts in the annulus. In this 
regard, eddies which make contact with both 
spherical surfaces (that is, those that span the 
annulus) are far more effective in transferring heat 
than those confined near one surface. Likewise, two 
eddies appear more effective than one, provided both 
span the annulus. The total rate of heat transfer and 
torque increase as both Re and GrJRe’ increase, 
though more strongly with the latter parameter. 

A more extensive presentation of results for this 
geometry may be found in [14]. 
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CONVECTION THERMIQUE DANS DES ESPACES ANNULAIRES 
SPHERIQUES-1 CONVECTION FORCEE 

R&urn&On considtre la convection for&e stationnaire d’un flmde visqueux entre deux spheres 
concentriques, maintenues B des temphatures diffkrentes et tournant autour d’un axe commun avec des 
vitesses angulaires diffirentes. On r&out de faGon approchiie les tquatlons par une solution de 
perturbation rCguli&re valable pour les faibles nombres de Reynolds et par une solution de Galerkin 
mochfiire pour les nombres de Reynolds mod&is. On presente les configurations d’Ccoulement, de 
distribution de tempirature et les caractbristiques du transfert thermique pour les d&rents cas 
consid6ris. Les resultats thkoriques sur le transfert thermique pour des nombres de Reynolds petits ou 
mod&r&s avec la sphtre extCrieure fixe sont cornpar& B des rtsultats expCrlmentaux anterieurs et relatifs g 
des grands nombres de Reynolds. On montre la di&rence entre la conduction, l’bcoulement de Stokes et 

la convectlon de couche limite. 

THERMISCHE KONVEKTION IN ROTIERENDEN, KUGELFORMIGEN 
RINGR#UMEN-II -GESCHICHTETE STROMUNGEN 

Zusammenfassung-Fdr ein zrihes “Boussinesq-FluId”. das sich zwischen 2 konzentrischen Kugeln 
befindet, wird stationsre gemischte thermische Konvektion betrachtet. Die Kugeln werden auf 
unterschiedlichen Temperaturen gehalten und rotleren mit unterschiedhcher Winkelgeschwindigkeit urn 
eine gemeinsame Achse. Ein gleichm$iges radiales Beschleunigungsfeld wirkt auf das Fluid ein. Mittels 
einer modifizierten Galerkin-Methode erhslt man NPherungslGsungen der mal3geblichen Gleichungen im 
Bereich mtiiger Reynolds+Zahlen. Als Ergebnis werden die Stromlimenbilder, die Temperaturvertei- 
lungen und das Verhalten von WBrmeiibergang und Drehmoment dargestellt, und zwar fiir verschiedene 
Winkelgeschwmdigkeitsverhriltnisse und Schichtungsgrade. Es wird gezeigt, daR sich bei zunehmenden 
AuftriebskrIften das Bild der PrimTr- und SekundPrstrdmung ebenso Indert wie die Temperatur- 

verteilung. Der Gesamtbetrag von Warmeiibergang und Drehmoment nimmt da&i zu. 

TEl-lJlOBAR KOHBEKUMR’B 3A30PE MEXAY BPAlUAtOlIlMMMCCl CQEPAMM. 
‘iACTb”: CTPATM@MLIMPOBAHHOE TEqEHME 

AHHoTaUHR - PaccMaTptiaaeTcn craut4oHapHan cMetuanHaR Tennoaa KotmeKuwII BRPKOR W~~KOCTM 

B 3a3ope MexKny JIB~MR KOHUeHTpM’IeCKMMM c+epaMn B np&mimeHww 6yccMHecKa. C@epbl Haxo- 

DRTCIl “pH pa3,W’,Hbli’TeM”epaTypaX M BpaLUaKlTCn C pa3,qHqHblMM yrnOBblMM CKOpOCTSMM BOKpyr 

OGtueR 0~14. XKHnKOCTb nonBepraeTCn 603ne~CTwi~ onHopouHor0 pamianbHor0 rpasMTatwioHHor0 

none. C noh4otubto Monn@wiposaHiioro Merona FanepKtcrHa nonyreiibi npd%wimeHHble pemetwin 

WZXOflHbIX ypaBHeHHR ,lnR CpenHMX 3HaYCHMd ‘,MCna PetiHOnbXa ,!$W HeCKOnbKllX OTHOLUeHMti 

yrnomx cKopocrei2 M cTeneHeR CTpaTM&4KauMH TeqeHMfl np~~0flflTCn KapTMHa TeqeHm. pacnpene- 

neHcle TeM”epaTyp, a TaKXe XapaKTCpHCTMKM TCuJlOO6MeHa W KpyTSUUclfi MOMeHT. nOKa3aHO. 9TO 

C yBC,,,,‘,eHHeM nO&MHOti CClllbl npOMCriOnMT M3MeHCHMe nepBWHOti M BTOpMSHOii KapTCrH TelleHMII. 

a TaKxe pacnpenenewis Termeparyp B pe3)nbTaTe BO3paCTaWT C)MMapHan MHTCHCNBHOCTb 

TennooGMeHa M ~pyT11uu4ti hioMeHT. 


